Electric Vehicle Driver Clustering using Statistical Model and Machine Learning
نویسندگان
چکیده
Electric Vehicle (EV) is playing a significant role in the distribution energy management systems since the power consumption level of the EVs is much higher than the other regular home appliances. The randomness of the EV driver behaviors make the optimal charging or discharging scheduling even more difficult due to the uncertain charging session parameters. To minimize the impact of behavioral uncertainties, it is critical to develop effective methods to predict EV load for smart EV energy management. Using the EV smart charging infrastructures on UCLA campus and city of Santa Monica as testbeds, we have collected real-world datasets of EV charging behaviors, based on which we proposed an EV user modeling technique which combines statistical analysis and machine learning approaches. Specifically, unsupervised clustering algorithm, and multilayer perceptron are applied to historical charging record to make the day-ahead EV parking and load prediction. Experimental results with cross-validation show that our model can achieve good performance for charging control scheduling and online EV load forecasting.
منابع مشابه
Field Oriented Control of Dual Mechanical Port Machine for Hybrid Electric Vehicle
A dual mechanical port machine (DMPM) is used as an electrically variable transmission (EVT) in hybrid electric vehicle (HEV). In the conventional HEV, this machine is replaced by a planetary gearbox and two electric machines and makes this structure simpler. This paper presents field oriented control (FOC) for DMPM. For HEV application, drive efficiency and wide operating speed range are impor...
متن کاملStock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملOptimal Design of Axial Flux Permanent Magnet Synchronous Motor for Electric Vehicle Applications Using GAand FEM
Axial Flux Permanent Magnet (AFPM) machines are attractive candidates for Electric Vehicles (EVs) applications due to their axial compact structure, high efficiency, high power and torque density. This paper presents general design characteristics of AFPM machines. Moreover, torque density of the machine which is selected as main objective function, is enhanced by using Genetic Algorithm (GA) a...
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملA Novel Hybrid-Excited Modular Variable Reluctance Motor for Electric Vehicle Applications: Analysis, Comparison, and Implementation
A variable reluctance machine (VRM) has been proven to be an outstanding candidate for electric vehicle (EV) applications. This paper introduces a new double-stator, 12/14/12-pole three-phase hybrid-excited modular variable reluctance machine (MVRM) for EV applications. In order to demonstrate the superiorities of the proposed structure, the static torque characteristics and dynamic performance...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.04193 شماره
صفحات -
تاریخ انتشار 2018